Apply both generics::tidy()
and generics::glance()
to an object and
return a single tibble with both sets of information.
An object to be converted into a tidy tibble.
Additional arguments passed to generics::tidy()
and generics::glance()
.
Arguments are passed to both methods, but should be ignored by the
inapplicable method. For example, if called on an lm object,
conf.int
will affect generics::tidy()
but not generics::glance()
.
A list of additional arguments passed only
to generics::tidy()
.
A list of additional arguments passed only
to generics::glance()
.
A tibble with columns and rows from
generics::tidy()
and columns of repeated rows
from generics::glance()
.
Column names that appear in both the tidy
data and glance
data will be
disambiguated by appending "model.
" to the glance
column names.
mod <- lm(mpg ~ wt + qsec, data = mtcars)
tidy_glance(mod)
#> # A tibble: 3 × 17
#> term estimate std.error statistic p.value r.squared adj.r.squared sigma
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercep… 19.7 5.25 3.76 7.65e- 4 0.826 0.814 2.60
#> 2 wt -5.05 0.484 -10.4 2.52e-11 0.826 0.814 2.60
#> 3 qsec 0.929 0.265 3.51 1.50e- 3 0.826 0.814 2.60
#> # ℹ 9 more variables: model.statistic <dbl>, model.p.value <dbl>, df <dbl>,
#> # logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>, df.residual <int>,
#> # nobs <int>
tidy_glance(mod, conf.int = TRUE)
#> # A tibble: 3 × 19
#> term estimate std.error statistic p.value conf.low conf.high r.squared
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.7 5.25 3.76 7.65e- 4 9.00 30.5 0.826
#> 2 wt -5.05 0.484 -10.4 2.52e-11 -6.04 -4.06 0.826
#> 3 qsec 0.929 0.265 3.51 1.50e- 3 0.387 1.47 0.826
#> # ℹ 11 more variables: adj.r.squared <dbl>, sigma <dbl>, model.statistic <dbl>,
#> # model.p.value <dbl>, df <dbl>, logLik <dbl>, AIC <dbl>, BIC <dbl>,
#> # deviance <dbl>, df.residual <int>, nobs <int>
tidy_glance(mod, tidy_args = list(conf.int = TRUE))
#> # A tibble: 3 × 19
#> term estimate std.error statistic p.value conf.low conf.high r.squared
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 19.7 5.25 3.76 7.65e- 4 9.00 30.5 0.826
#> 2 wt -5.05 0.484 -10.4 2.52e-11 -6.04 -4.06 0.826
#> 3 qsec 0.929 0.265 3.51 1.50e- 3 0.387 1.47 0.826
#> # ℹ 11 more variables: adj.r.squared <dbl>, sigma <dbl>, model.statistic <dbl>,
#> # model.p.value <dbl>, df <dbl>, logLik <dbl>, AIC <dbl>, BIC <dbl>,
#> # deviance <dbl>, df.residual <int>, nobs <int>